Benjamin Walter
math 210
Assignment Normal_Eqn_and_QR_Decomposition due 12/02/2021 at 02:05pm EET
Problem 1. (1 point) METUNCC/Applied_Math/least-squares/normal_eqn_4x3.pg
Write the normal equation finding the best approximate solution to

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
-2 & -2 & 1 \\
-1 & -3 & -2 \\
2 & -2 & -1 \\
3 & -3 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
-3 \\
2 \\
-2 \\
2
\end{array}\right]} \\
& {\left[\begin{array}{lll}
- & - & - \\
- & - & -
\end{array}\right]\left[\begin{array}{l}
\hat{x} \\
\hat{y} \\
\hat{z}
\end{array}\right]=\left[\begin{array}{l}
- \\
-
\end{array}\right]}
\end{aligned}
$$

Problem 2. (1 point) METUNCC/Applied_Math/least-squares/line.pg
By using the method of least squares, find the best line through the points:
$(-2,-1),(1,0),(2,2),(0,-3)$.

Step 1. The general equation of a line is $c_{0}+c_{1} x=y$. Plugging the data points into this formula gives a matrix equation $A \mathbf{c}=\mathbf{y}$.

$$
\left[\begin{array}{ll}
- & - \\
- & - \\
- & -
\end{array}\right]\left[\begin{array}{l}
c_{0} \\
c_{1}
\end{array}\right]=\left[\begin{array}{l}
- \\
- \\
-
\end{array}\right]
$$

Step 2. The matrix equation $A \mathbf{c}=\mathbf{y}$ (probably) has no solution, so instead we use the normal equation $A^{T} A \hat{\mathbf{c}}=A^{T} \mathbf{y}$

$$
\begin{aligned}
& \mathrm{A}^{\mathrm{T}} \mathrm{~A}=\left[\begin{array}{ll}
- & - \\
- & -
\end{array}\right] \\
& \mathrm{A}^{\mathrm{T}} \mathbf{y}=\left[\begin{array}{l}
- \\
-
\end{array}\right]
\end{aligned}
$$

Step 3. Solving the normal equation gives the answer

$$
\hat{\mathbf{c}}=\left[\begin{array}{l}
- \\
-
\end{array}\right]
$$

which corresponds to the formula

$$
y=
$$

Analysis. Compute the predicted y values: $\hat{\mathbf{y}}=\mathrm{A} \hat{\mathbf{c}}$.

$$
\hat{\mathbf{y}}=\left[\begin{array}{l}
\square \\
\square
\end{array}\right]
$$

Compute the error vector: $\mathbf{e}=\mathbf{y}-\hat{\mathbf{y}}$.
$\mathbf{e}=\left[\begin{array}{l}\square \\ \square\end{array}\right]$
Compute the total error: $\mathrm{SSE}=e_{1}^{2}+e_{2}^{2}+e_{3}^{2}+e_{4}^{2}$.
$\mathrm{SSE}=$ \qquad

Problem 3. (1 point) METUNCC/Applied_Math/least-squares/QR_Compute-3x3.pg
Compute a scaled QR decomposition of the matrix $A=\left[\begin{array}{ccc}-2 & -1 & -13 \\ 6 & -11 & 7 \\ -4 & 12 & 3\end{array}\right]$

$$
A=\left[\begin{array}{lll}
- & - & - \\
- & - & - \\
- & - & -
\end{array}\right]\left[\begin{array}{lll}
- & - & - \\
- & - & - \\
- & - & -
\end{array}\right]
$$

Problem 4. (1 point) METUNCC/Applied_Math/least-squares/QR_Divide-3x3.pg
In this problem you will use scaled $Q R$ decomposition to divide

$$
\left[\begin{array}{ccc}
-1 & 6 & -2 \\
-1 & 6 & 2 \\
4 & 3 & 0
\end{array}\right]\left[\begin{array}{ccc}
1 & -1 & 1 \\
0 & 1 & -2 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
-2 \\
-6 \\
-11
\end{array}\right]
$$

Step 1. Divide by Q.
Use the fact that the columns of Q are orthogonal to solve
$\left[\begin{array}{ccc}-1 & 6 & -2 \\ -1 & 6 & 2 \\ 4 & 3 & 0\end{array}\right]\left[\begin{array}{l}a \\ b \\ c\end{array}\right]=\left[\begin{array}{c}-2 \\ -6 \\ -11\end{array}\right]$
$\left[\begin{array}{l}a \\ b \\ c\end{array}\right]=\left[\begin{array}{l}- \\ -\end{array}\right]$
Hint: All answers should simplify to be integers.

Step 2. Divide by R.
Use back-substitution to solve
$\left[\begin{array}{ccc}1 & -1 & 1 \\ 0 & 1 & -2 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}a \\ b \\ c\end{array}\right]$
$\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}- \\ -\end{array}\right]$

Problem 5. (1 point) METUNCC/Applied_Math/least-squares/Amatrix.pg
In this problem for experts, you will compute the matrix A used to make least square estimates in three exotic situations.
(A) Construct the matrix equation used to find the least squares best fit of the data $(3,1), \quad(-3,-2), \quad(2,2), \quad(-2,0)$. to the formula $c_{0} \frac{1}{x}+c_{1}+c_{2} x=y$.

$$
\left[\begin{array}{lll}
- & - & - \\
- & - & - \\
- & - & - \\
- & - & -
\end{array}\right]\left[\begin{array}{l}
c_{0} \\
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{l}
- \\
- \\
-
\end{array}\right]
$$

(B) Construct the matrix equation used to find the least squares best fit of the data $(1,1,2), \quad(-3,-3,3), \quad(3,-1,-1), \quad(-3,-3,3)$. to the formula $c_{0} x+c_{1} y+c_{2} x y=z$.

$$
\left[\begin{array}{lll}
- & - & - \\
- & - & - \\
- & - & -
\end{array}\right]\left[\begin{array}{l}
c_{0} \\
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{l}
- \\
- \\
-
\end{array}\right]
$$

(C) Construct the matrix equation used to find the least squares best fit of the data $(0,-3),\left(\frac{\pi}{6}, 3\right), \quad\left(\frac{\pi}{3},-3\right)$ to the formula $c_{0} \sin (x)+c_{1} \cos (x)=y$

$$
\left[\begin{array}{ll}
- & - \\
- & - \\
- & -
\end{array}\right]\left[\begin{array}{l}
c_{0} \\
c_{1}
\end{array}\right]=\left[\begin{array}{l}
- \\
-
\end{array}\right]
$$

Problem 6. (1 point) METUNCC/Applied_Math/least-squares/QR_Normal-4x3.pg
In this problem you will use scaled $Q R$ solve the normal equation for

$$
\left[\begin{array}{ccc}
-4 & 2 & 2 \\
2 & -2 & 2 \\
4 & 1 & 2 \\
-4 & -2 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 4 & -3 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
-11 \\
4 \\
-4 \\
-4
\end{array}\right]
$$

Step 1. Solve the normal equation with Q.

Use the fact that the columns of Q are orthogonal to solve the normal equation for
$\left[\begin{array}{ccc}-4 & 2 & 2 \\ 2 & -2 & 2 \\ 4 & 1 & 2 \\ -4 & -2 & 1\end{array}\right]\left[\begin{array}{l}a \\ b \\ c\end{array}\right]=\left[\begin{array}{c}-11 \\ 4 \\ -4 \\ -4\end{array}\right]$
$\left[\begin{array}{l}\hat{a} \\ \hat{b} \\ \hat{c}\end{array}\right]=\left[\begin{array}{l}- \\ -\end{array}\right]$
Hint: All answers should simplify to be integers.

Step 2. Divide by R.
Use back-substitution to solve
$\left[\begin{array}{ccc}1 & 4 & -3 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{l}\hat{x} \\ \hat{y} \\ \hat{z}\end{array}\right]=\left[\begin{array}{l}\hat{a} \\ \hat{b} \\ \hat{c}\end{array}\right]$
$\left[\begin{array}{l}\hat{x} \\ \hat{y} \\ \hat{z}\end{array}\right]=\left[\begin{array}{l}- \\ -\end{array}\right]$
Generated by ©WeBWorK, http://webwork.maa.org, Mathematical Association of America

